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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ON THE STABILITY OF THE SOLUTIONS OF BQUATIONS
WITH RETARDED ARGUMENTS *

By Y. M. Repin

In the present paper certain theorems are proved on the stability
of the solutions of systems of differential equations with retarded argu-
ment. These theorems refer to problems of stability to the first ap-
proximation and the behavior of the solutions for small changes of the
retardations. They are analogous to the corresponding theorems on sta-
bility to the first approximation (ref. 1) and the stability for continu-
ously acting disturbances (ref. 2) for systems of ordinary differential

equations and are proven by the methods first applied in the work re-
ferred to.

1. Preliminary Remarks

Iet us consider the system of equations

dxgit) = X;(t, x9(t = v9(t)), ey x(t = (), e, x (8 - T9(%)),...,

xp(t - t5(t))) (i=1,..., n)

In what follows we shall for briefness write it in the following
form:

dx.
E{l’= X;(t, x(t - 'rj(t))) (i, k= 1y¢eey, 03 3 =1y.0., m)

(1.1)

The functions Xi(t,xkj) depending on mn + 1 arguments we shall
assume determined and continuous with respect to the set of arguments

*Ob ustoichivosti reshenii uravnenii s zapazdyvayushchim argumenton,
Prikladnaya matematika i mekhanika, t. XXI, no. 2, 1957, pp. 253-261.
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for
t>A and lxljl fook |y < E

It is assumed moreover that Xi(t,O) = 0 and that the functions
Xi(t,xkj) satisfy the ILipshitz condition with respect to the arguments
X 5 (uniformly with respect to t):

m

[, () - % (630 ST D gy - ]tz ) ()
k=1

=1

The functions Tj(t), defined for t > A, are assumed nonnegative,

continuous, and bounded: Tj(t) < T.

The fundamental initial problem is formulated as follows. ILet there
be given_ty > A and a system of n continuous functions ®;(t) on the

segment [ty - T, tg|; it is required to find a system of n continuous
functions x;(t), t 2 tgy, satisfying the condition x;(tg) = @;(tg) and
the system (1.1), where if % - Tj(t) < tg, then x(t - Tj(t)) on the

right sides of the system (1.1) must be substituted for ¢,(t - Tj(t)).

As is known (ref. 3), if ,cpl(t)l ot Icpn(t)l < H, this problem

for the assumptions made has a single solution determined in a certain
right-half neighborhood of the point +ty. We shall say that this solution

is determined at the instant tg5 by the functions wi(t). It is evident
that the conditions ¢4 =0 for A-T <t < A determine the trivial
solution of the system (1.1) x;(t) = 0, t = A.

In wvhat follows it is assumed that the solutions determined by the
initial functions ¢;(t) (at any instant tg) satisfying the inequality

|¢l(t)| P |q>n(t)| <5<H

for sufficiently small & can be extended over the entire half-axis
t >t
= o-

Definition 1. - The trivial solution of the system (1.1) is called
uniformly and asymptotically stable if there exists a number B > O such
that for each n > O there exists a number T(7) > O such that if

9TT-d
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t - t5 > T(n), then

.]xl(t)] +o..+ |x ()] <

where x;(t) are determined from the system (1.1) at the instant ty by
the functions ¢4(t) satisfying the inequality |e1(t)] +...+ | (t)] < B.

Together with the system (1.1), we now consider the system
(o}
i o (o} .
at_ = Xi(t,Xk(t - Tj(t))) (t,k = l,-oo’ n; J = l,---’ m) (103)
obtained from system (1.1) by substituting for the functions ‘tj(t) the

functions Tg(t) satisfying the same conditions as Tj(t).

Definition 2. - The trivial solution of the system (1.1) is called
stable for continuously acting disturbances of the retardations if for
any €& > O there exist numbers ©&(¢) and p(e) such that if

for ()] +..ot lon(£)] < 8Ce),  Jrs(t) - <5()] < ole)
then

[x(£)] +...4 |xo(t)|<e for t 2t

vhere xg(t) are determined from the system (1.3) by the initial func-
tions ¢;(t) at the instant tq.

With regard to definition 2, see references 4 and 5. We shall prove
two auxiliary propositions.
Lemma 1. - For t3< t< T, let a continuous function satisfy the

inequality

t
M(t) < £(t) + Cf M(g) ag
to

where f(t) is continuous on [tO,T]. Then,

t

M(t) < £f(t) + C f £(€) ec(t-8) ar (1.4)
to




In particular, if f(t) has a continuous derivative, then
t

M(t) < £(t) S(tF0) +f pr(g) (V8 4

t

Proof. - It is not difficult to see that

t

MO(t) = £(t) + cf £(&) eo(t-8) 4
to

is a solution of the integral equation

t
MO(f) = £(t) + C MP(g) d&
to
To prove inequality (1.4), it is sufficient to establish that
N(t) = M°(t) - M(t) =20

But, obviously,

N(t) = C ft N(E) a&
to

Since

E
N(E) > Cft N(n) an

we can write

t fE t
N(t) > C? f f N(n) dn d& = C? (t - &) N(&) ag
to Jto to

9TT-d
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Continuing to substitute under the integral C f N(n) dn for
t

0
N(g), we obtain

t
n -1 .
AR c W 1 n(g) ag (= 1,2...)

Passing, in this inequality, to the limit as n -+ «», we obtain
N(t) = 0, as was required. Inequality (1.5) is obtained from this by
integrating by parts.

Terma 2. - The solution of system (1.1), determined at the instant
tg 2 A Dby the functions o;(t) satisfying the inequality
|¢l(t)l oot l¢n(t)| < ® < H, satisfies the inequality

n
E |x,(t)] < semnL{t-%0) (1.6)
i=1

provided it can be continued in the region lxl] +ooot lxnl < H.

Proof. - In virtue of the syster (1.1) and the initial conditions,
we have

t
x1(t) = eyt +f X3 (65 (£ - 75(8))) @
to

whence
n t m n
Z [x;(t)] <8+ an Z Z | % (& - rj(g))l a&
i=1 to F1 k=1

vhere, if & - T3(8) = tg, then x (€ - ©5(8)) = @ (& - ©4(E).

Let M(t) = max {8, max [] x1(E)] +...+ ]xn(g)l]} for tgp< &< t.
Evidently, we have

n t
Z [x;(t)] < 8+ anf M(g) d&
iz

to



Since the right side of this inequality monotonically does not de-
crease and is always not less than 8, the functions M(&) satisfy the
inequality

%
M(t) < & + anf M(&) a
%o

whence according to lemma 1 the required inequality also follows.

2. Stability in the First Approximation

Together with the system (1.1), let us consider the system

dy.
Et_l= Ti(t, et - w5(8))) (1, k=1,..0, n5 §=1,..., m) (2.1)

satisfying the same conditions as system (1.1) (the Liptshitz constant
for the system (2.1) may, of course, be different).

Theorem 1. - Iet the trivial solution of system (1.1) be uniformly
and asymptotically stable, where there exist constants o >0, B2 1 such
that for all sufficiently small © there follows from the inequality
|o1(t) ] +..+ o (t)| < B the inequality

|2 (6)] +.vt |xy(t)| < BOe" U E"%0) (2.2)

where x;(t) are determined from the system (1.1) by the functions ¢4(t)
at the instant tgy. Further, let the right sides of systems (1.1) and
(2.1) satisfy the inequality

m I n
j= k=1 k=1

(2.3)

Then for sufficiently small o the trivial solution of the system
(2.1) is uniformly and asymptotically stable.

Proof. - Let us consider at the instant tp a certain system of
the initial functions wi(t) satisfying the condition
|e1(t)] +...+ |0, (t)] < 8, where & < h, and so small that the solution
of the system (1.1) determined by the functions @;(t) can be continued

91t-4
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on the entire half-axis t 2 tp and satisfies inequality (2.2). With the

same initial functions we determine also the solution of the system (2.1)
in a certain right-half neighborhood of the point ty. We shall show

that, provided |y;(t)] +...+ |y,(t)] < h, the inequality will hold:

n

Z]x (t) - y;(%)| = L°5B (em(I#o) (t-to) _ 4 (2.4)

+ 0
i=1

In fact, on account of (1.1) and (2.1), we have

t

x5 (t) = 94(tp) +[ X;(8,% (€ - TJ(E))) ag
to
t

y1(t) = o5 (tg) "'] Y (E, (€ - TJ(E))) dg
t

"0

Then

t
i [25(t) - y3(t)| < fn‘_‘ %3 (8,2, (& - 75(8))) - ¥3(E, (& - v4(8)))] ag <
i=1 i=1 Jtg

t
En: f |%; (8, %, (8 - 75(8))) - X3(E,mc(& - T5(8)))] & +
i=1 Jtq

f 123 (5,78 - ©5(8))) - T(E,7,(8 - T5(E)))] & <
=1 Jig

t m n t m n
n |L Z E lxk(E - Tj(i)) - Yk(i - Tj(f))' + Uf E 2 ka(E - TJ(E))I gl =
t

to =1 k=1 o F1 k=1
n

t n
n f I:(L + 0) f: zn: lxk(E - "rj(éj)) - yk(5 - TJ(E))I +0 Z E ka(€ - TJ(E)H ag
% 1 k=1

o =1 k=1



Let
u(t) = maxi 15 (8) - y4(8)] for to< &<t
1=1
Then
n t I
D Ixi(€) - y;(t)] < ommBd(t - t) + mn(L + o) M(§) ak A
i=1 to &
whence

t
M(t) € mnodB(t - tg) + mn(L + o) f M(E) a&
t

Applying lemma 1, we obtain the required inequality.
Iet us now take an arbitrary number & < h so0 small that if
Jo ()] +...+ Jop (t)| < &/2B

then to the difference of the solutions of systems (1.1) and (2.1),
determined by the functions @;(t), the estimate just obtained can be
applied.

Let Jo,(t)] +...+ | @ ()] < €/2B, and the magnitude T = (1/a) 1n 4B

and o so small that

L_G%_E (emn(Li-or)(T+'r) 1)< 1

We shall show that the solution y;(t) of the system (2.1) determined
at the instant ty by the initial functions ¢;(t), for
tg£t=ty+ T+ T cannot go outside the e€-neighborhood of the origin

of coordinates (here and in the following by e&-neighborhood of the
origin of coordinates there is meant the set of points satisfying the
inequality |xy| +...+ |x | <€), and for to+ T< t< t5+ T+ T lies

in the 6/4B-neighborhood of the origin. Whence, in particular, it fol-
lows that the solution yi(t) can be continued also on the segment
[to, to+ T+ T].
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In fact, at the instant tp< t; < top+ T + T let the solution
yi(t) at first go outside the é€-neighborhood of the origin. Then, if

x3(t) is determined from the system (1.1) by the same initial functions
as Yi(t);

n n

n
e = ly(e)] = D0 Ixgley)] + 3 Ixslty) - wi(ty)] < =+
i1

i=1 i=1

€oB mn(I#o)(tq-tq) £, &
(L + o) "< =gy <o

But this is a contradiction. Now for tog+ T<t=<1t5+ T+,

n

- g _-aT . €& _ €&
vi(t)< 3 e + g5 =45

i=1

If the yy(t) are now considered on the segment [tg+ T, tg+ T + 7]
as the initial functions at the instant to + T + T, then relative to the
continuation of the solution yi(t) we arrive by exactly the same method
at the conclusion that for to+ T+ 7T < t < tg+ 2(T + T) it does not go

ocutside the s/z—neighborhood of the origin, while for
to+ 2T + TS t < tg+ 2(T + 1) it lies in the &/8B-neighborhood of the

origin.
Continuing this process by successive steps of length T + T, we
arrive at the conclusion that, if ¢i(t) lies in the e/EB—neighborhood

of the origin, then the solution of the system (2.1) on the segment
[to + (T + T), tg + (n + 1)(T + )] lies in the & /2D-neighborhood of

the origin. It is now evident that the trivial solution of the system
(2.1) is uniformly and asymptotically stable.

Corollary 1. - If the system (2.1) satisfies the condition

m n m n n
1% (ts25) = Y3(t,xe5)) < Z Z E) V(E E kajl) for E |xgjl<H
=1 k=1 1 k=1 k=1

where w(x) -+ 0 for x = 0, then under the same assumptions with regard
to the system (1.1), the trivial solution of the system (2.1) is uniformly
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and aymptotically stable. In particular, the system (1.1) may be the
system obtained as a result of the usual linearization of the system (2.1).

In fact, for any o > O the inequality (2.3) is satisfied for suf-
ficiently small h.

Corollary 2. - For the functions Yi(t’xkj)’ let there exist func-
tions Xi(xkj) such that for any o > O there exists a number A(o) 2 A
such that for t > A(c) the inequality is satisfied

m n
RACE RS AC IR DD DN LY
=1 k=1

If the solutions of the system

dx.
5o = Kalxe(t - T5(0)) (2.5)

satisfy the conditions imposed in theorem 1 on the solutions of system
(1.1), then the trivial solution of system (2.1) is uniformly and
asymptotically stable.

In fact, let us choose o0, as in the proof of theorem 1, and then
consider the systems (2.1) and (2.5) for t = A(o). Applying theorem 1
and lemma 2 we obtained the proof required.

Remark. - Theorem 1 differs from the theorem of Wright (refs. 4 and
6) on the stability by the first approximation, in particular by the
circumstance that the nonstationary case is also taken into account.
However, strictly speaking, it is not a generalization of Wright's theorem
at least for the reason that in the latter there are considered not only
?quatio?s with retarded argument but also equations of the 'neutral type!
ref. 4).

3. Maintenance of Stability for Small Changes of Retardations

We consider the systems (1.1) and (1.3).

Theorem 2. - If the solutions of system (1.1) satisfy the conditions
imposed on them in theorem 1, and |T 5(t) - 't‘j(t)] < p, then for suffi-

ciently small p the trivial solution of the system (1.3) is uniformly
and asymptotically stable.

91T-d
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Proof. - Let us assume that the functions ¢;(t) determining the
solutions x;(t) and x9(t) of the systems (1.1) and (1.3) at the in-
stant to Dpossess continuous derivatives and let

[o1(t)] +oo ot o (t)] < 8, |o(t)| < ¥

Let © be so small that the solution x;(t) of the system (1.1) can
be continued on the entire semiaxis t > to and satisfies the inequality

[x(£) | +...+ ]xn(t)l < B8e'“(t't0).

We shall show that the inequality holds:
n
?_ |x;(£) - 2(t)] < pn(y + smiB) (™ L(t-t0) _ 1) (3.1)

provided the solution x3(t) can be continued in the H-neighborhood
of the origin. By virtue of (1.1) and (1.3), we have

x5 (t)

t
o4 (tp) +f X;(E;x (& - TJ(E))) ag
0

t
x3(t) = ¢4(tg) +f X3 (8,3Q(5 - ©5(£))) ag
to

Then

n n t
D Ix(e) - x9(w)] szf |3 (8 39,( - 75(8))) - %5 (€, %2(& - ©3(e)))| & <
i=1 i= to

t m n
an ZZ |x (€ - 75(8)) - xQ(E - w3(8))| & <
to J=1 k=1

t m n
an D3 It - wy®) - wle - TN o +
t

o &1 k=1

an 2: I € - v5(&)) - Qe - v$(&))] ek

3—1 k=1
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We uow estimate separately

t _n
f Z | (8 - ©3(8)) - xk(E - v5(&))] a&
to k=1

= (t - to)lek(e - 15(6)) - x(0 - T3(0))] (to= 62 t)
k=

Here three cases muy present themselves. The first case, 1if
6 - 1'3(9) < tg, O - 1:‘3(9) < tg

where

n

D Ixilo - w4(6)) - xlo - w5(8))] < erm
k=1

since x(t) for t < t; coincides with P (t).

The second case occurs if

6 - T4(0) 2ty and 6 - 1‘3(9) 2 tg

where

n n 9-TJ(9)
D I(0 - w5000 - xyl0 - ¥3(0))| = 3 f X(nxy(n=5u(n) an <
k=1 k=1 9-1‘3(9)

m n 9‘13(9)
- <
oLy L-Tg(e) |%y(n - Tu(n))] an| < pdmnLB

The third case, if one of the numbers 6 - rj(e), 6 - 1‘3(9) is
greater than tO’ but the second less than tg. We then write the

yTT-d
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inequality
n
Z [xe(6 - Tj(e)) - x.(6 - 't“]?(e)] <
k=1
n n
D Imle - w5000) = xlwg)] + Y Ixltg) - (6 - <3(0))]
k=1 =1

and estimate each of the sums on the right side of this inequality, in
both the first and second cases; we obtain

n
D 1m0 - 75(0)) - w6 - (8))] < pnly + tuiB)
k=1

It is evident that the last inequality holds for any case. Now let

M(t) = maxg I (&) - x2(&)] for ty<E<t

We then obtain
t

[x1(t) - x2(t)] < pmn®(y + 8mIB) L(t - to) + mnzf M(E) a&
t=1 o

whence

+

M(t) < pmn®(y + ®mIB) L(t - tg) + moL fu M(&) az
to

and applying lemma 1, we obtain the inequality (3.1).

Let us take € > 0 so small that the inequality (3.l1) can be
applied if

lo1(t)] +...+ op(t)] < ¢/2B
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Let

o

€ 1n 4B
Z""i“‘”‘ Zpemile Y0 Z A T =TT 0
e

i=1

be so small that pmnL(1 + B)(ean(T+27) - 1) < 1/4.

We shall show that on the segment [to + T, to+ T + 31] the solution
xg(t) of the system (1.3), determined by the functions @4(t) at the
instant +tg, cannot go out of the ée-neighborhood of the origin, but on
the segment [tg + T + T, ty + T + 3t] lies in the ¢/4B-neighborhood
of the origin. In fact, on the segment [to, to + 1t ] the inequality holds:

[xi(t)l oot lxg(t)I < ¢e/2B

in virtue of inequality (1.6).

We shall now determine the solution x;(t) of the system (1.1) with
the functions x3(t) at the instant to + T. Evidently, x§(t) has con-
tinuous derivatives on the segment [to, to + 1], where

axf/at = Xy (,2Q(t - 19(¢)))

From the last equation it follows that

<t ZE B2t - v9(1))] < 2L

On the segment [to + T, tg + T + 3t], we now have everywhere the

dXi

inequality

e} n n
-a(t-to-)
[x§(¢)] = fx;(£)] + x;(t) - xQ(t)] < £e a(t-to-T) |

emL _ e -a(t-tn~T €

9TT-d



E-116

15

The first component everywhere on the segment considered does not
exceed €/2; but if t5+ T + 7T < t5+ T + 3T, then it does not exceed

% ee 0T - ¢/8B. Whence follows our assertion on the behavior of xg(t).

) Let us now consider the solution of the system (1.1) determined by
the functions x(t) at the instant tg5+ T + 3t. Again, xg(t) has con-
tinuous derivatives, where, since [x§(t)| +...+ |x8(t)| < /4B on the
segment [tg + T + T, tg+ T + 37],

jax§/at | < emL/4B

Repeating further these steps (of time interval T + 2t), we arrive
at the conclusion that on the segment

[to+nT +(2n+1) 7T, tg+ (n+1) T+ (2n + 3) 7]

the inequality holds:

o] [ €
()] < & 12 ) leg(0)] < —2

i=

Whence follows the conclusion of the theorem on the uniform asympto-
tic stability of the trivial solution of system (1.3).

Corollary. - In the system (1.1), let Tj(t)'+ Ty for t = If
the trivial solution of the system

dx;
T = X;(t,x (6 - 'rj)) (3.2)

is uniformly and asymptotically stable, and inequality (2.2) holds, the
trivial solution of the system (1.1) is uniformly and asymptotically
stable. In fact, let us choose p &8s in the proof of theorem 2 and let
ltj(t) -t, <p for t2A(p) 2A for all Jj. Considering the systems

(1.1) and (3.2) for t > A(p) and applying theorem 2 and lemma 2, we
obtain what was required.
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4. Stability for Continuously Acting
Disturbances of Retardations

Theorem 3. - If the trivial solution of system (1.1) is uniformly
and asymptotically stable, it is stable for continuously acting disturb-
ances of the retardations.

Proof. - Let us consider the system (1.3) together with the system
(1.1) and estimate the difference between their solutions, determined at
the instant t5 by the same functions ¢i(t), admitting continuous

derivatives, with

[o1(t)] +...+ Jo ()] < 8 <, [dps(t)/at] < ¥

We shall show that under these assumptions the inequality holds:

E |x(£) - x9(¢)] < prn(emL{t-t0) . 1) 4

p8m?n?L2(t - tg) (1 + m;L(iz-—EQ) emnL{t-t0) (4.1)

provided both solutions can be continued in the H-neighborhood of the
origin. The estimate is conducted exactly in the same way as in section
3, excluding only the second case arising in the estimate

t n
f D Inle - 8) - (k- T3] as
t

0k‘=l

We here have the inequality (1.6):

Z |2,(6 - ©4(6)) - x(6 - 9(0))] <

n Q-TJ(G)
nL Z; f xy(n - Tu(n))l an = pSmnIean(t'to)
=1 v= 9-13(9)

9TT-d
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Thus,

t
f Z]Xk(g - TJ(E)) - xk(E - TS(E))l d& < (t - to) DD(T + 5mIean(t’tO))
=

and finally

. t
M(t) < LomnZ(y + 5mIean(t't0))(t - tg) + anf M(E) a&
o)
From this we obtain the inequality (4.1) by the application of
lemma 1.

We shall now prove that for each €& >0 there exists a 8(e) > 0
such that, if the initial functions ¢1(t) satisfy the condition

|@1(t)] +..+ Jen(t)] < B, then the solution of the system (1.1) deter-

mined by them will for all t 2 tn satisfy the inequality
|x1(t)] +...+ |x,(t)] < €. In fact, for & there exists a number T(e)

such that for t 2 tg + T(e) we shall have |x;(t)] +...+ [x,(t)] < ¢
(if & < B).

Iet B < e/emnl.T(t:)‘ Then also for tp= t = T(e) + tos

Jx1(t)}] +..o [xp(t)] <&

in virtue of inequality (1.6).

We now take € » 0 and corresponding to the number € /2 we find
6, > 0 such that if

[o1(t)] +..+ Jo (t)] < 87, then |x (t)] +...+ |x,(t)] < €/2

Further, corresponding to the number 81/2 we find T such that if
t - to > T, then

Jx (£) ] +.. 0% Jx (£} ] < 81/2
We shall show that if

l¢l(t)| +..0F ,Qn(t)' < Sle-anT
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and p 1s so small that
pmln (ean(T+2’L') - l) + an(T + 21)(1 + M_T_zj-_.z_ﬂ) ean(T+ZT)§ <%

then the solution xg(t) of the system (1.3), determined by the functions
9;(t), satisfies the inequality ]xg(t)] Foooh ]xg(t)] <€ for t 2 t,.

In fact, ng(t)l oot lxg(t)l < 8, on the segment [ty, tg + TJ.
We shall show that

91T-%

]xg(t)l oot ng(t)l < & on the segment [t +T, t, + T + 37]

0

ng(t)l +ooot ng(t)] < 8, on the segment [ty + T + T, ty + T + 37%]

In fact, taking as the initial functions for the system (1.1) the
functions xg(t) on the segment [tgy, ty + T], we determine by their means
the solution of this system. Applying the inequality (4.1) with y = &jmL
(which is obtained as in sectlon 3), we have

n n n
E | xQ(t)| < z Ix4(t)] + z |x3() - x9(t)] < § +
i=1 1=1 i=l

— g(ean(t-to-'r) S 1)«

o]
r<e

mnL(t - to - T)) ean(t-to‘T)i <
. <

&
mnL(t - to-'r)(1+ 3

On the segment [ty + T + T, to + T + 3t], however, by the choice of
T we have

n
o) b
(o) 1 1
[x{(t) | < 5 + 5 =8
i=1

We again consider the solution of system (l.l), determined by the .
functions x?(t), taken on the segment [to + T+ 2%, tog+ T+ 3t].
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By the same considerations we find that |xJ(t)| +...+ |xS(t)| < e
also on the segment [ty + T + 31, tg + 2T + 51}, while on the segment
[to + 2T + 3T, to + 2T + 57] we shall have |xQ(t)] +...+ |xS(t) | < 8.

Continuing this process further we find that

]xg(t)l Fooot ng(t)]< e for t2t,

as was required. The theorem proved is a generalization of the local
part of the theorem of reference 5 on the stability for coutinuously
acting disturbances of the retardations.
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